
Semantic Service Composition and Co-ordination
in CASCOM ∗

Thorsten Möller Heiko Schuldt
UMIT

Information and Software Engineering
Hall in Tyrol, Austria

thorsten.moeller|heiko.schuldt@umit.at

Andreas Gerber Matthias Klusch
German Research Center for

Artificial Intelligence
Saarbrücken, Germany

klusch|gerber@dfki.de

In: Proceedings of the 3rd Healthcare Digital Libraries Workshop (HDL 2005), Vi-
enna, Austria, September 2005.

ABSTRACT
Semantic (Web) services allow for a fine-grained description
of the functionality of single services and highly facilitate the
combination and composition of several services into pro-
cesses. The traditional workflow and process management
approach considers the definition of a process at build-time
without taking into account the service instances that are
actually available at run-time. Moreover, failures have to
be anticipated in order to define appropriate failure han-
dling strategies. In this paper, we present an agent-based
approach where process execution is distributed among a
set of agents. A dedicated planning component composes
semantic services based on the particular goals of an ap-
plication. In case of failures, the planner is re-invoked in
order to define contingency execution strategies. Finally,
instance matchmaking is done at run-time by choosing the
most appropriate service provider (according to pre-defined
quality-of-service constraints). The focus of this paper is
on the interaction of planning, matchmaking, and execution
of processes (compound services) consisting of invocations of
semantic web services. In the EU-funded project CASCOM,
these technologies are currently applied to the composition
of semantic services from the healthcare domain in order to
run individualized applications (processes), thereby provid-
ing access to an eHealth digital library of services and data.

Keywords
Agent systems, Service co-ordination, Service matchmaking,
Service composition planning, Composite service execution

1. INTRODUCTION
Enriching the conventional syntactic description of a ser-
vice with information on its semantics allows for a more
focused search for appropriate services in a large-scale net-
work. However, complex applications usually require the

∗This work is supported by the EU in the 6th Framework
Programme within the STREP CASCOM (Context-Aware
Business Application Service Co-ordination in Mobile Com-
puting Environments), contract no. 511632.

combination and composition of several (semantic) services
into compound services or processes, respectively. The tra-
ditional workflow and process management approach consid-
ers the definition of a process at build-time but does not take
into account the service instances that are actually available
at run-time. Failures have to be anticipated and appropriate
failure handling also has to be defined already at build-time.
In this approach, unforeseen failures cannot be handled. In
addition, usually a centralized approach is followed that im-
plies a single point of failure and that does not scale well
with the number of processes to be executed and the num-
ber of semantic services available.

The goal of the CASCOM project (Context-Aware Business
Application Service Co-ordination in Mobile Computing En-
vironments) [5] is to overcome these limitations by imple-
menting, validating, and testing a value-added supportive
infrastructure for business application services for mobile
workers and users across mobile and fixed networks. The
driving vision of CASCOM is that ubiquitous business ap-
plication services are flexibly co-ordinated and pervasively
provided to the mobile worker/user by intelligent agents in
dynamically changing contexts of open, large-scale, and per-
vasive environments.

The CASCOM architecture is divided into several layers (see
Figure 1). The planned technological innovations at each
layer can be summarized as follows. The main outcome of
the network layer is a generic, secure, and open intelligent
agent-based peer-to-peer (IP2P) network infrastructure tak-
ing into account varying quality-of-service (QoS) of wireless
communication paths, limitations of resource-poor mobile
devices, and contextual variability of nomadic environments.
IP2P environments are extensions to conventional P2P ar-
chitectures with components for mobile and ad hoc comput-
ing, wireless communications, and a broad range of perva-
sive devices. The main outcomes of the service co-ordination
layer are i.) flexible semantic Web service discovery includ-
ing adaptive service QoS-oriented service matching and us-
age of distributed semantic Web service directories (DSD),
ii.) dynamic context-aware semantic Web service compo-
sition including resource-efficient interaction between DSD
and service composition planner, fault-tolerant interleaving
of planning and service execution, and iii.) secure service ex-
ecution and monitoring providing service data consistency.

In this paper, we present the agent-based approach to pro-



Wireless/Wireline Networks (WLAN, WAN, LAN)

Network Environment: P2P, QoS

Service Execution Platform: consistent execution

Network Layer

Service Composition: Planning, Workflow management

Service Execution Platform: consistent execution

Service co-ordination Layer

Service Modeling: OWL-S, Declarative

Applications: Healhcare

Application Layer

Users

Figure 1: Layered CASCOM architecture

cess generation and execution followed in CASCOM. Process
execution is distributed among a set of co-operating service
provider agents. Each agent works off its part of a process
(i.e., locally invokes the required services) and then forwards
control to the next agent that is then in charge of continu-
ing process execution. Processes are not defined statically.
Rather, a dedicated planning component composes semantic
services based on the particular goals of an application. In
case of failures, the planner is re-invoked in order to define
contingency execution strategies. Finally, instance match-
making is done at run-time by choosing the most appropri-
ate agent (according to pre-defined QoS constraints) among
a set of agents qualifying for the execution of a particular
semantic service.

The focus of this paper is the interaction of planning, match-
making, and execution of processes consisting of invocations
of semantic web services. In particular, we apply these tech-
nologies to semantic web service composition in a health-
care scenario (emergency assistance), which supports peo-
ple traveling in foreign countries with the healthcare ser-
vices they need when suddenly suffering from illnesses and
needing medical treatment and care. This of course requires
access to services and data in an eHealth digital library.

The paper is organized as follows: In Section 2, we present
an emergency assistance scenario we focus on in CASCOM.
The different technologies needed to support this scenario
are introduced in Section 3 and Section 4 shows how these
can be seamlessly integrated. Section 5 discusses related
word and Section 6 concludes.

2. SAMPLE HEALTHCARE APPLICATION
In the following, a sample business application service sce-
nario Emergency Assistance is described (see Figure 2). The
scenario is based on the fact that people on the move, e.g.
travelling in foreign countries for business or holidays, may
get into situations where they need medical assistance be-
cause of a sudden disease or emergency. Currently, these
sorts of episodes are neither tackled nor realised in this form
in practice and no software system is presently widespread
in use to address them.

Alice and Bob, tourists from Finland, are abroad on a coun-
tryside journey in Austria during their summer vacation.
They carry a PDA, already equipped with the CASCOM mo-
bile agent suite. Suddenly after some days, Alice is seri-

ously suffering from unknown pain in the upper part of her
body. For this reason, she wants to immediately call a hos-
pital or physician. After activation of the PDA, the agent
immediately finds out contact information of a local health-
care institution next to them1. Additionally, the agent gives
them contact of the Finnish representative of the Emergency
Medical Assistance service centre (EMA) that takes care of
the remote support of the patient. Alice decides to immedi-
ately go to the local hospital. The agent on the PDA also
supplies them with information on how to get there. This
could be either a map showing their current location and the
healthcare centre location, a phone number for a local taxi,
or the instructions to get a connection via public transporta-
tion. On arrival and check-in at the local hospital, Alice
has to manually answer some questions about her personal
data because the healthcare institution does not provide the
infrastructure and services to plug her PDA into the local in-
formation system, i.e., to exchange initial data. During the
first examinations by the local emergency physician it bears
out that Alice either had a silent heart attack or angina pec-
toris, but the physician is not sure about the diagnosis and
wants to obtain a second opinion. Even Bob and Alice are
concerned about the doubtful situation. Bob now uses the
PDA to access a second opinion service by forwarding all
information available so far. It should be quite obvious that
if the hospital had the CASCOM infrastructure installed, the
local physician could have used a local PC or PDA to access
the second opinion service. However, in this case the agent
on the PDA finds out the contact information of a special-
ized cardiologist and establishes a connection. After assess-
ment of the situation, they both decide that Alice should be
transferred soon to a hospital with advanced cardiac life sup-
port to undertake thorough examinations. Alice says that she
wants to be transferred back to a hospital in her home coun-
try Finland. As a result, the EMA service centre will be con-
tacted to organize the transfer by using the PDA – remem-
ber that contact information was transferred before. Now,
EMA’s agent first automatically investigates possible travel
arrangements (depending on the medical circumstances and
the geographical distance, the agent may eventually come up
with a decision on whether using regular flights, a car, or
some other form of transportation). Second, the agent in-
forms all people that are involved during the transfer (doctors
and escorts). Third, it contacts Alice’s insurance company
to make sure that her insurance will cover all possible trans-
portation costs. In addition, the agent could possibly contact
automatically the Finnish hospital (which participates in the
CASCOM network) to make further arrangements. Back
in Finland, Alice is treated at a sophisticated cardiac hospi-
tal. After two weeks of recovery she finally uses her PDA
to send a “Thank you” to all the people involved with her
medical case.

As results of the scenario described above, persons (patients)
not only need medical treatment, they also need informa-
tional as well as (sometimes) transportation assistance. Fur-
thermore, assistance in the form of information is also re-
quired by the physicians, hospitals, or healthcare profes-
sionals involved. One straight implication of these complex
requirements is the need for on-demand initiation, com-
position, coordination, and supervision of various ac-

1Their location is found out either by using the GSM net-
work cell identifier, or by GPS.



Figure 2: Emergency Assistance application

tivities represented mostly through non-human actors, like
agents and services, but also though persons.

3. SERVICE COORDINATION LAYER
In this section, we introduce the basic technologies needed
for the requirements derived from the application scenario.
These requirements include i.) matchmaking – the selection
of appropriate semantic Web Services (using semantic equiv-
alence/similarity), ii.) composition planning – the composi-
tion of several semantic Web services into processes, and iii.)
execution – a runtime environment for compound services.

3.1 Service Matchmaking
The Service Matchmaking functionality provides the means
to compare the semantics specified for services, thus allow-
ing to detect semantically equivalent/similar services. Sev-
eral approaches for sophisticated semantic matchmaking of
Web services have been proposed that rely on ontology-
based languages (e.g., OWL-S [6], WSMO, and Annotated
WSDL [19]) and are grounded with formal semantics such
as Description Logics [2]. The most important principle of
semantic matchmaking is that semantics of words used in
the description of Web services are formally defined in on-
tologies. Those ontologies can be exploited by matchmaker
agents to determine the degree of semantic matching of ad-
vertised services with a given service request.

For semantic matching of services specified in OWL-S, we
have developed the OWLS-MX for hybrid matchmaking. It
takes any OWL-S service description as a query, and returns
an ordered set of relevant services that match the query, each
annotated with its individual degree of matching (DOM),
and syntactic similarity value. The user may extend the
query by specifying the desired DOM, and a syntactic simi-
larity threshold. OWLS-MX first classifies the service query
I/O concepts into its local service I/O concept ontology. As
usual, we assume that the type of computed terminologi-
cal subsumption relation determines the degree of semantic
relation between pairs of input and concepts. Attached to
each concept in the concept hierarchy are auxiliary infor-
mation on whether it is used as an input or output concept

by any service that has been registered at the matchmaker.
The corresponding I/O lists of unique service identifiers for
input and output concepts are then used by the matchmaker
to compute the set of relevant services that match the given
query according to its five matching filters. In particular,
OWLS-MX does not only pair-wisely determine the degree
of logical match but syntactic similarity between the termi-
nological expressions built by unfolding each of the consid-
ered query and service input (output) concept in the local
matchmaker ontology. This way, logical subsumption fail-
ures produced by the integrated description logic reasoner
of OWLS-MX are tolerated, if the syntactic similarity value
computed by means of a specific information retrieval simi-
larity metric is sufficient (i.e., exceeds the given threshold).

3.2 Service Composition Planning
The Service Composition functionality supports the context
dependent composition of compound, value-added services
whenever no appropriate single service can be found during
matchmaking. In CASCOM we have different approaches of
semantic web service composition, and OWLS-Xplan [16] is
one opportunity we intend to use. OWLS-Xplan takes a set
of available OWL-S services, related OWL ontologies, and
a query as input, and returns a plan sequence of composed
services that satisfies the query goal. For this purpose, it
first converts the domain ontology and service descriptions
in OWL and OWL-S, respectively, to equivalent problem
and domain descriptions. The problem description contains
the definition of all types, predicates and actions, whereas
the domain description includes all objects, the initial state,
and the goal state. Both descriptions are then used by the
AI planner Xplan to create a composition plan that solves
the given problem in the actual domain.

Xplan is a heuristic hybrid search planner based on the FF-
planner [13]. It combines guided local search with graph
planning, and a simple form of hierarchical task networks to
produce a plan sequence of actions that solves a given prob-
lem. This yields a higher degree of flexibility opposed to
pure Hierarchical Task-reduction Planning (HTN) whereas
the use of predefined workflows or methods improves the ef-
ficiency of the FF-planner. In contrast to the general HTN
planning approach, a graph-plan based planner is guaran-
teed to always find a solution independent from whether the
given set of decomposition rules for HTN planning would
allow to build a plan that contains only atomic actions. In
fact, any graph-plan based planner would test every com-
bination of actions in the search space to satisfy the goal
which, of course, can quickly become prohibitively expen-
sive. Xplan combines the strengths of both approaches. It
is a graph-plan based planner with additional functionality
to perform decomposition like a HTN planner.

The Xplan system consists of the XML parsing module,
a pre-processing module, the planning core, and the re-
planning module. After the domain and problem defini-
tions have been parsed, Xplan compiles the information into
memory efficient data structures. A connectivity graph is
then generated, which contains information about connec-
tions between facts and instantiated operators, as well as
information about numerical expressions which can be con-
nected to facts. This connectivity graph is maintained dur-
ing the whole planning process and serves as a kind of effi-



cient lookup table for the actual search.

Xplan uses an enforced hill-climbing search method to prune
the search space during planning, and a modified version of
relaxed graph-planning that allows to use (decomposition)
information from hierarchical task networks during the ef-
ficient creation of the relaxed planning graph, if required,
such as in partially hierarchical domains. Information on
the quality of an action (service) are utilized by the local
search to decide upon two or more steps that are equally
weighted by the used heuristic. In addition, Xplan includes
a re-planning component which is able to re-adjust outdated
plans during execution time (see Section 4).

3.3 Service Execution
The service execution system (SES) executes compound ser-
vices (in what follows, we will use the term process synony-
mously) as they are generated by the service composition
planner agent (SCPA). For process execution, we first as-
sume that a compound service contains an arbitrary number
of service invocations whereby the composition structure is
equal to an acyclic ordered graph, i.e., combined sequential
and parallel flows together forming processes as denoted in
[22]. Second, as a basis for correct process execution, each
service invocation is assumed to be atomic and compensat-
able. This means that the effects of a service can be undone
later Otherwise, unwanted side effects of aborted or com-
pensated executions may remain and at-most-once execu-
tion semantic could not be guaranteed. For services which
do not comply with the atomicity requirement, we assume
that a wrapper can be built which adds this functionality.
Third, we assume that services are stateless, i.e., that they
never have to remember anything beyond interaction. In our
approach, process state (i.e., intermediate results) is solely
stored by the execution system. Finally, our approach con-
siders the crash failure model, which means that components
such as services and machines may fail by prematurely halt-
ing their execution.

The execution system is based on principles of the OSIRIS
(Open Service Infrastructure for Reliable and Integrated
process Support) process management system [24]. Upon
that, aspects of agent-oriented systems were introduced to
fit into the CASCOM infrastructure. In particular, the ex-
ecution system consists of one ore more federated execution
agents organized in a peer-to-peer manner, meaning that
no central execution coordinator is required. To accomplish
this, every agent implements a process manager which co-
ordinates execution basically by forwarding control and data
to the next agent(s). Furthermore, we distinguish between
two types of execution agents (SEA): service provider agents
and standard agents. The difference between both is that
the former is locally attached to one or more service in-
stance(s) on the same machine (i.e., agent and service(s)
run on the same device) whereas the latter may run on any
computing device – especially mobile devices – and calls ser-
vice(s) remotely. Nevertheless, both implement execution
functionality completely according to our execution require-
ments.

The execution first involves decomposing the process model
into its atomic execution units. An execution unit contains a
service invocation s and links to all the services that are the

2 Decomposition

3 Instance Matchmaking

1 Send input & Start

4 Spawn execution 
(service calls)

5 Replanning request

Service Composition
(planning, semantical 

matchmaking)

Failure

7 Partial new input xorAbort command
6 On-line replanning 8 Rollback if necessary

9 Execution of partial 
new input

10 provide result

Execution phase

Preparation phase

Composition System Execution System

Figure 3: Interaction and execution model

direct successors of s. In addition, for failure handling pur-
poses, also information on the predecessors of s is needed.
This is important in order to determine which services need
to be compensated (i.e., which effects need to be undone)
when a failure during process execution occurs. This means
that for every service only links to adjacent services are
of interest. All in all, the units provide execution agents
with all information they require to execute a service and to
do forward navigation afterwards. The explicit distinction
between control and data flow enables optimal interaction
paths with as less communication efforts between execution
agents as possible.

4. INTEGRATION OF SERVICE MATCH-
MAKING, COMPOSITION PLANNING,
AND EXECUTION

As noted in Section 3.3, the SCPA acts as the client for
SES. Consequently, our combined interaction and execution
model consists of the following steps (see Figure 3). Before
actual execution starts, the SCPA creates a new process us-
ing a planning algorithm and semantic matchmaking to em-
ploy some of the services in the domain according to their
service descriptions. It then sends input (the newly gener-
ated process type) to SES and orders execution start (1) –
note that the process type contains all necessary information
for instantiation; just the individual service types still need
to be bound to instances. Now, the execution preparation
phase starts. Since a process instance is not suitable for ex-
ecution on the physical layer, a detailed execution plan has
to be created [23]. The most important part of this plan is
the decomposition of the process into its execution units (2).
The following step is called instance matchmaking at run-
time (3), where a concrete service provider instance of given
type will be selected based on most current QoS criteria like
average load or execution costs2.

The preparation phase is finished by distributing required
information to the execution agents, such that they can

2This is important in case there is more than one service
instance available with equal signature among them.



forward control on their own during execution. Then SES
spawns service execution on behalf of the input (4), i.e. the
execution phase starts. During execution, failures might
happen, for example service instances or other infrastruc-
ture components might crash. In such a situation, execution
cannot terminate or at least cannot continue without some
recovery mechanism. In classical transactional systems, this
would lead to an abort of the global transaction (i.e., all
side effects created so far will be undone or compensated)
and some external logic has to decide what to do next. In
our approach, a crash failure situation does not necessar-
ily end up in the abortion of process execution. After a
failure, SES temporarily freezes process execution. In par-
ticular, if parallel execution paths exist, all of them will be
frozen. Furthermore, SES knows about the current process
state and the side-effects created. Then, SES transmits this
information to the SCPA and requests on-line contingency
re-planning (5) – remember that the original process execu-
tion goal still holds. Starting from the stop point the planner
now tries to fix the problem by searching for an alternate
path (6) – in all likelihood by employing semantically simi-
lar services. If SCPA succeeded in composing a partial new
process of remaining activities, this new process fragment
will be sent to SES (7). Otherwise, if it was not possible
to find an alternative path, SCS sends an abort command
to SES. Consequently, SES is then obligated to rollback the
process side effects completely (8) – which is possible accord-
ing to our assumption of atomic, compensatable services. In
the former case, SES can continue execution with the new
process fragment. In order to be able to do this, it first
has to replace the old remaining process fragment (which is
now obsolete) with the new one. This is accomplished by
starting a new sub-preparation phase, whereby decomposi-
tion, instance matchmaking, and distribution to the service
provider agents again takes place (i.e., update of the execu-
tion plan). Afterwards, execution continues (9). Replanning
is also required in case the original goal for which the process
has been generated is altered. If the new process fragment
requires to partially undo side effects because of its changes
(i.e., utilisation of other services), this will be done right
before continuation. Finally, when execution has finished,
the result will be sent back to SCPA (10). In order not to
block resources endlessly during on-line re-planning, we use
a timeout based approach: In case of no reply from SCPA to
SES until the timeout (because SCPA crashed or connection
has been lost), SES aborts the current process execution and
tries to notify SCPA about that.

One aspect of our interaction model that is still open for dis-
cussion is whether we allow for indefinite re-planning phases.
By allowing indefinite re-planning phases it is evident that
execution theoretically might never terminate. On the other
hand, and with the presented emergency assistance scenario
in mind, probability for high numbers of re-planning cy-
cles falls with the number of cycles: For emergency ser-
vice providers it is crucial that their services are constantly
available. If not, nobody would develop trust in such ap-
plications. However, because of different service providers,
similar services (alternatives) are expected to exist. Thus,
it is empirically evident that either an alternative is avail-
able early, which eventually leads to success or no alterna-
tive exists and execution stops entirely. A simple approach
to address this issue is to fix a maximum re-planning cy-

cle count for the implementation. A more sophisticated ap-
proach would be the definition of execution progress. If there
is no significant progress towards the execution goal even
though both SCPA and SEA are not inactive (i.e., execution
stagnates) its value converges to zero. Thus, it is possible
to detect stagnated executions and abort them eventually.
All in all, the decision about which policy should be used
for re-planing phases should not be made without taking the
target application into account.

In the scenario presented in Section 2, Alice and Bob are
first required to state the goal of the process they aim to be
executed (e.g., transfer to a hospital, receive treatment from
there while giving the local physician access to Alice’s health
record). Then, by combining matchmaking and planning, a
process tailored to Alice’s needs is generated and executed.
In case of failures or of revised goals (e.g., second opinion
is needed or later on transportation), planning is re-invoked
and the process is changed (and executed) accordingly.

5. RELATED WORK
Similar to CASCOM, the ARTEMIS Project (A Seman-
tic Web Service-based P2P Infrastructure for the Interop-
erability of Medical Information) [1] also aims at supporting
healthcare applications by means of dedicated semantic Web
services. However, ARTEMIS focuses at providing single se-
mantic Web services and addresses standards and interop-
erability issues of these services, while the goal of CASCOM
is to provide value-added, composite services in order to
support sophisticated ad hoc process-based healthcare ap-
plications in IP2P environments.

Issues of service composition (planning) and co-ordination
are currently widely addressed in research, especially if ex-
tension to semantic description of Web services comes into
play. Some ontology-based approaches to semantic service
matchmaking that have been proposed in the literature are
LARKS [26], OWLS/UDDI [18], MAtchMAker-Service [7],
RACER [17], Parameterized Semantic [10], HotBlu [8], and
Signature-Specification [15]. Other approaches are either
process-based (e.g., High-precision Service Retrieval Service
[14]), peer-based (e.g., Semantic Web Services P2P Dis-
covery Service [3]) or are hybrid approaches (e.g., the Re-
cursive Tree Matchmaker [4]). Alternate approaches in-
clude graph based matching methods such as those pre-
sented in [28], [15], and [8]. Furthermore, there are cur-
rently only very few approaches and software tools available
for OWL-S based service composition planning such as, for
instance, OWL-S Composition Planner using SHOP2 [29],
Logic-based DAML-S composition planning [25], the DAML-
S workflow composer [27], a Petri-net approach in which an
OWL-S service description is automatically translated into
Petri-nets [12].

Finally, the issue of service execution is widely addressed in
classical research domains like transactional information sys-
tems and process management. The OSIRIS infrastructure
on which the SES is built provides a scalable distributed pro-
cess navigation platform. To achieve this, it combines a rich
set of aspects. Based on the hyperdatabase vision [21], ideas
from process management, peer-to-peer networks, database
technology, and Grid [11] infrastructures have been com-
bined. Similar to OSIRIS where processes are running within



a peer-to-peer community that is established by the indi-
vidual service providers, the MARCAs presented in [9] are
service providers acting as peers. [20] provides a general
overview on fault-tolerant agent based (process) execution.

6. CONCLUSIONS
In this paper, we have presented the CASCOM approach to
providing access to services and data in an eHealth digital
library. Ad hoc applications by means of processes are sup-
ported by seamlessly combining sophisticated service com-
position planning, service matchmaking, and agent-based
distributed service execution. The binding of service types
to service instances during runtime integrates well with the
dynamic nature of the healthcare application domain, i.e.,
provides a high degree of flexibility.

The CASCOM infrastructure that is currently being built
will be evaluated in detail in a real-world setting in a coop-
eration with TILAK, the umbrella organization of the state
hospitals of the Austrian state Tyrol. In future work, we aim
–among others– at addressing more sophisticated transac-
tion and failure models, especially by considering malicious
failures (i.e., Byzantine failures as they might appear in un-
trusted environments).

7. REFERENCES
[1] The ARTEMIS project.

http://www.srdc.metu.edu.tr/webpage/projects/artemis.

[2] F. Baader and W. Nutt. The Description Logic
Handbook-Theory. Implementation and Applications,
chapter Basic Description Logics, Cambridge University
Press, pages 47–100, 2003.

[3] F. Banaei-Kashani, C. Chen, and C. Shahabi. Wspds: Web
services peer-to-peer discovery service. ISWS 2004, 2004.

[4] S. Bansal and J. Vidal. Matchmaking of web services based
on the DAML-S service model. AAMAS2003, Melbourne,
Australia, 2003.

[5] The CASCOM project. http://www.ist-cascom.org.

[6] T. O.-S. Coalition. OWL-S 1.0 (Beta) Draft Release.
Autonomous Agents and Multi-Agent Systems, 2003.

[7] S. Colucci, T. D. Noia, E. D. Sciascio, F. Donini,
M. Mongiello, G. Piscitelli, and G. Rossi. An agency for
semantic-based automatic discovery of web-services. In
Artificial Intelligence Applications and Innovations. Proc.
of IFIPWCC-04, Kluwer Academic Publishers, pages
315–328, 2004.

[8] I. Constantinescu and B. Faltings. Efficient matchmaking
and directory services. The 2003 IEEE/WIC International
Conference on Web Intelligence, 2003.

[9] A. Dogac, Y. Tambag, A. Tumer, M. Ezbiderli, N. Tatbul,
N. Hamali, C. Icdem, and C. Beeri. A Workflow System
through Cooperating Agents for Control and Document
Flow over the Internet. In 7th International Conference on
Cooperative Information Systems (CoopIS 2000), pages
138–143, Eilat, Israel, Sept. 2000.

[10] P. Doshi, R. Goodwin, R. Akkiraju, and S. Roeder.
Parameterized semantic matchmaking for workflow
composition. Technical Report RC23133, IBM Research,
T.J. Watson Research Center, NY, 2002.

[11] I. Foster and C. Kesselman, editors. The Grid: Blueprint
for a New Computing Infrastructure. Morgan Kaufmann,
San Francisco, 2nd edition, 2004.

[12] R. Hamadi and B. Benatallah. A Petri-Net-Based Model
for Web Service Composition. Proc. 14th Australasian
Database Conf. Database Technologies, ACM Press 2003,
pages 191–200, 2003.

[13] J. Hoffmann and B. Nebel. The FF planning system: Fast
plan generation through heuristic search. Journal of
Artificial Intelligence Research, (14):253–302, 2001.

[14] M. Klein and A. Bernstein. Towards high-precision service
retrieval. IEEE Internet Computing, 8(1), pages 30–36,
January 2004.

[15] M. Klein and B. Koenig-Ries. Coupled signature and
specification matching for automatic service binding.
ECOWS, pages 183–197, 2004.

[16] M. Klusch, A. Gerber, and M. Schmidt. Semantic Web
Service Composition Planning with OWLS-Xplan. First
International Symposium on Agents and the Semantic
Web, 2005. To appear.

[17] L. Li and I.Horrocks. A software framework for
matchmaking based on semantic web technology.
Proceedings of the twelfth international conference on
World Wide Web, ACM Press, pages 331–339, 2003.

[18] M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycara.
Semantic matching of web services capabilities. Proceedings
of the First International Semantic Web Conference on
The Semantic Web, Springer-Verlag, pages 333–347, 2002.

[19] A. Patil, S. Oundhakar, A. Sheth, and K. Verma. Meteor-s
web service annotation framework. Proceeding of the World
Wide Web Conference, 2004.

[20] S. Pleisch and A. Schiper. Approaches to Fault-tolerant and
Transactional Mobile Agent Execution—an Algorithmic
View. ACM Comput. Surv., 36(3):219–262, 2004.

[21] H.-J. Schek, H. Schuldt, C. Schuler, and R. Weber.
Infrastructure for Information Spaces. In Advances in
Databases and Information Systems, Proc. of the 6th
East-European Symposium, ADBIS’2002, pages 23–36,
Bratislava, Slovakia, Sept. 2002.

[22] H. Schuldt, G. Alonso, C. Beeri, and H.-J. Schek.
Atomicity and Isolation for Transactional Processes. ACM
Transactions on Database Systems (TODS), 27(1):63–116,
Mar. 2002.

[23] C. Schuler, H. Schuldt, C. Türker, R. Weber, and H.-J.
Schek. Peer-to-Peer Execution of (Transactional) Processes.
International Journal of Cooperative Information Systems
(IJCIS), 2005. To appear.

[24] C. Schuler, R. Weber, H. Schuldt, and H.-J. Schek. Scalable
Peer-to-Peer Process Management - The OSIRIS Approach.
In Proceedings of 2nd ICWS’2004, pages 26–34, San Diego,
CA, USA, July 2004. IEEE Computer Society.

[25] M. Sheshagiri, M. desJardins, and T. Finin. A planner for
composing services described in DAML-S. Proceedings of
AAMAS 2003 Workshop on Web Services and
Agent-Based Engineering, 2003.

[26] K. Sycara, S. Widoff, M. Klusch, and J. Lu. LARKS:
Dynamic Matchmaking Among Heterogeneous Software
Agents in Cyberspace. Kluwer Academic Press, 2002.

[27] S. Tarkoma and M. Laukkanen. Adaptive agent-based
service composition for wireless terminals. In M. Klusch et
al., editor, Proceedings of CIA VII, Helsinki, Finland,
August 2003. Springer Verlag, LNAI 2782, pages 16–29,
2003.

[28] D. Trastour, C. Bartolini, and J. Gonzalez-Castillo. A
semantic web approach to service description for
matchmaking of services. Proceedings of SWWS, 2001.

[29] D. Wu, B. Parsia, J. H. E. Sirin, and D. Nau. Automating
DAML-S web services composition using SHOP2.
Proceedings of 2nd ISWC2003, Sanibel Island, Florida,
USA, pages 20–23, 2003.


